Part Number Hot Search : 
HVD138 30120 PUMF11 F1401 L1040 RF30100 TC100 HPB1165
Product Description
Full Text Search
 

To Download APT50GS60BRG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  absolute maximum ratings thermal and mechanical characteristics g c e symbol parameter min typ max unit p d total power dissipation t c = @ 25c - - 415 w r jc junction to case thermal resistance igbt - - 0.30 c/w r cs case to sink thermal resistance, flat greased surface - 0.11 - t j , t stg operating and storage junction temperature range -55 - 150 c t l soldering temperature for 10 seconds (1.6mm from case) - - 300 w t package weight - 0.22 - oz - 5.9 - g torque mounting torque (to-247), 6-32 m3 screw - - 10 inlbf - - 1.1 nm symbol parameter rating unit i c1 continuous collector current t c = @ 25c 93 a i c1 continuous collector current t c = @ 100c 50 i cm pulsed collector current 1 195 v ge gate-emitter voltage 30v v ssoa switching safe operating area 195 e as single pulse avalanche energy 2 280 mj t sc short circut withstand time 3 10 s typical applications ? zvs phase shifted and other full bridge ? half bridge ? high power pfc boost ? welding ? induction heating ? high frequency smps features ? fast switching with low emi ? very low e off for maximum ef?ciency ? short circuit rated ? low gate charge ? tight parameter distribution ? easy paralleling ? rohs compliant the thunderbolt hs ? series is based on thin wafer non-punch through (npt) technology similar to the thunderbolt ? series, but trades higher v ce(on) for signi?cantly lower turn-on energy e off . the low switching losses enable operation at switching frequencies over 100khz, approaching power mosfet performance but lower cost. an extremely tight parameter distribution combined with a positive v ce(on) temperature coef?cient make it easy to parallel thunderbolts hs ? igbt's. controlled slew rates result in very good noise and oscillation immunity and low emi. the short circuit duration rating of 10s make these igbt's suitable for motor drive and inverter applications. reliability is further enhanced by avalanche en ergy ruggedness. combi versions are packaged with a high speed, soft recovery dq series diode. thunderbolt ? high speed npt igbt to-247 d 3 pak apt50gs60br(g) apt50gs60sr(g) 600v, 50a, v ce(on) = 2.8v typical apt50gs60br(g) apt50gs60sr(g) microsemi website - http://www.microsemi.com 052-6301 rev a 8-2007 caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. downloaded from: http:///
symbols parameter test conditions min typ max unit g fs forward transconductance v ce = 50v, i c = 50a - 31 - s c ies input capacitance v ge = 0v, v ce = 25v f = 1mhz - 2635 - pf c oes output capacitance - 240 - c res reverse transfer capacitance - 145 - c o(cr) reverse transfer capacitance charge related 5 v ge = 0v v ce = 0 to 400v - 115 - c o(er) reverse transfer capacitancecurrent related 6 85 q g total gate charge v ge = 0 to 15v i c = 50a, v ce = 300v - 235 - nc q ge gate-emitter charge - 18 - g gc gate-collector charge - 100 - t d(on) turn-on delay time inductive switching igbt and diode: t j = 25c, v cc = 400v, i c = 50a r g = 4.7? 7 , v gg = 15v - 16 - ns t r rise time - 33 - t d(off) turn-off delay time - 225 - t f fall time - 37 - e on1 turn-on switching energy 8 - tbd - mj e on2 turn-on switching energy 9 - 1.2 - e off turn-off switching energy 10 - 0.755 - t d(on) turn-on delay time inductive switching igbt and diode: t j = 125c, v cc = 400v, i c = 50a r g = 4.7? 7 , v gg = 15v - 33 - ns t r rise time - 33 - t d(off) turn-off delay time - 250 - t f fall time - 23 - e on1 turn-on switching energy 8 - tbd - mj e on2 turn-on switching energy 9 - 1.7 - e off turn-off switching energy 10 - 0.950 - symbol parameter test conditions min typ max unit v br(ces) collector-emitter breakdown voltage v ge = 0v, i c = 250a 600 - - v v br(ecs) emitter-collector breakdown voltage v ge = 0v, i c = 1a - 25 - ?v br(ces) / ?t j breakdown voltage temperature coeff reference to 25c , i c = 250a - 0.60 - v/c v ce(on) collector-emitter on voltage 4 v ge = 15v i c = 50a t j = 25c - 2.8 3.15 v t j = 125c - 3.25 - v ec diode forward voltage 4 i c = 50a t j = 25c - 2.15 - t j = 125c - 1.8 - v ge(th) gate-emitter threshold voltage v ge = v ce , i c = 1ma 3 4 5 ?v ge(th) /?t j threshold voltage temp coeff - 6.7 - mv/c i ces zero gate voltage collector current v ce = 600v, v ge = 0v t j = 25c - - 50 a t j = 125c - - tbd i ges gate-emitter leakage current v ge = 20v - - 100 na static characteristics t j = 25c unless otherwise speci?ed dynamic characteristics t j = 25c unless otherwise speci?ed apt50gs60b_sr(g) 052-6301 rev a 8-2007 downloaded from: http:///
v ce(on) , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics figure 2, output characteristics v ge , gate-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) figure 3, transfer characteristics figure 4, on state voltage vs gate-to- emitter voltage t j , junction temperature (c) gate charge (nc) figure 5, on state voltage vs junction temperature figure 6, gate charge v ce , collector-to-emitter voltage (v) t c , case temperature (c) figure 7, capacitance vs collector-to-emitter voltage figure 8, dc collector current vs case temper ature c, capacitance ( p f) v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) i c, dc collector current(a) v ge , gate-to-emitter voltage (v) v ce , collector-to-emitter voltage (v) i c , collector current (a) 0 1 2 3 4 5 6 0 5 10 15 20 25 30 0 2 4 6 8 10 12 6 8 10 12 14 16 0 25 50 75 100 125 150 0 50 100 150 200 250 0 100 200 300 400 500 600 25 50 75 100 125 150 150125 100 7550 25 0 150125 100 7550 25 05 4 3 2 1 0 50001000 100 10 250225 200 175 150 125 100 7550 25 06 5 4 3 2 1 0 1614 12 10 86 4 2 0 100 9080 70 60 50 40 30 20 10 0 v ce = 480v v ce = 300v v ce = 120v 250s pulse test<0.5 % duty cycle 11v 9v 8v 7v 10v 6v t j = 125c t j = 25c i c = 25a i c = 50a i c = 100a v ge = 15v. 250s pulse test <0.5 % duty cycle i c = 100a i c = 50a i c = 25a v ge = 15v t j = 125c t j = 25c t j = 150c t j = 125c i c = 25a t j = 25c t j = 25c. 250s pulse test <0.5 % duty cycle c oes c ies c res v ge = 13 & 15v typical performance curves apt50gs60b_sr(g) 052-6301 rev a 8-2007 downloaded from: http:///
i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junc tion temperature switching energy losses mj) e on2 , turn on energy loss (j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (mj) e off , turn off energy loss (j) t f, fall time (ns) t d (off) , turn-off delay time (ns) 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 10 20 30 40 50 0 25 50 75 100 125 2018 16 14 12 10 86 4 2 0 100 8060 40 20 0 60005000 4000 3000 2000 1000 0 10 86 4 2 0 300250 200 150 100 50 0 8070 60 50 40 30 20 10 0 25002000 1500 1000 500 06 5 4 3 2 1 0 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 400v r g = 4.7 ? l = 100h v ce = 400v v ge = +15v r g = 4.7 ? r g = 4.7 ? , l = 100h, v ce = 400v v ce = 400v t j = 25c , t j =125c r g = 4.7 ? l = 100h v ge = 15v t j = 125c, v ge = 15v t j = 25 or 125c,v ge = 15v t j = 25c, v ge = 15v t j = 125c,v ge = 15v t j = 25c,v ge = 15v v ce = 400v v ge = +15v r g = 4.7 ? t j = 125c, v ge = 15v t j = 25c, v ge = 15v v ce = 400v v ge = +15v r g = 4.7 ? e on2, 100a e off, 100a e off , 50a e on2 , 50a e on2 , 25a e off, 25a e on2, 100a e off, 100a e on2, 50a e off, 50a e on2, 25a e off, 25a v ce = 400v v ge = +15v t j = 125c r g = 4.7 ? , l = 100h, v ce = 400v typical performance curves apt50gs60b_sr(g) 052-6301 rev a 8-2007 downloaded from: http:///
0.0731 0.226 0.00606 0.260 dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink, sink to ambient, etc. set to zero when modeling only the case to junction. z ext rectangular pulse duration (seconds) figure 19, maximum effective transient thermal impedance, junction-to-case vs pulse duration figure 20, transient thermal impedance model i c , collector current (a) figure 21, operating frequency vs collector current z jc , thermal impedance (c/w) f max , operating frequency (khz) v ce , collector-to-emitter voltage (v) v ce , collector-to-emitter voltage (v) figure 17, forward safe operating area figure 18, maximum forward safe operating area i c , collector current (a) i c , collector current (a) 1 10 100 800 1 10 100 800 0.350.30 0.25 0.20 0.15 0.10 0.05 0 200100 10 1 0.1 200100 10 1 0.1 scaling for different case & junction temperatures: i c = i c(t c = 25 c) *( t j - t c )/125 t j = 150c t c = 25c 1ms 100ms v ce (on) dc line 100s i cm 10ms 13s t j = 125c t c = 75c 1ms 100ms v ce (on) dc line 100s i cm 10ms 13s peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: t j = 125 c t c = 75 c d = 50 %v ce = 400v r g = 4.7 ? 75c 100c 0.3 0.9 0.7 single pulse 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 0 10 20 30 40 50 60 70 80 90 160140 120 100 8060 40 20 0 apt50gs60b_sr(g) 052-6301 rev a 8-2007 typical performance curves downloaded from: http:///
i c a d.u.t. v ce v cc figure 24, turn-off switching waveforms and de?nitions figure 23, turn-on switching waveforms and de?nitions figure 22, inductive switching test circuit t j = 125c collector current collector voltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% apt40dq60 foot note:1 repetitive rating: pulse width and case temperature limited by maximum junction temperature. 2 starting at t j = 25c, l = 224h, r g = 25?, i c = 50a 3 short circuit time: v ge = 15v, v cc 600v, t j 150c 4 pulse test: pulse width < 380s, duty cycle < 2% 5 c o(cr) is de?ned as a ?xed capacitance with the same stored charge as c oes with v ce = 67% of v (br)ces . 6 c o(er) is de?ned as a ?xed capacitance with the same stored energy as c oes with v ce = 67% of v (br)ces . to calculate c o(er) for any value of v ce less than v (br)ces , use this equation: c o(er) = 5.57e-8/v ds ^2 + 7.15e-8/v ds + 2.75e-10. 7 r g is external gate resistance, not including internal gate resistance or gate driver impedance (mic4452). 8 e on1 is the inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on switching loss. it is measured by clamping the inductance with a silicon carbide scho ttky diode. 9 e on2 is the inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on energy. 10 eoff is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1 . microsemi reserves the right to change, without notice, the speci? cations and information contained herein. apt50gs60b_sr(g) 052-6301 rev a 8-2007 downloaded from: http:///
e1 sac: tin, silver, copper to-247 package outline d 3 pak package outline 15.49 (.610)16.26 (.640) 5.38 (.212)6.20 (.244) 6.15 (.242) bsc 4.50 (.177) max. 19.81 (.780)20.32 (.800) 20.80 (.819)21.46 (.845) 1.65 (.065)2.13 (.084) 1.01 (.040)1.40 (.055) 3.50 (.138)3.81 (.150) 2.87 (.113)3.12 (.123) 4.69 (.185)5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087)2.59 (.102) 0.40 (.016)0.79 (.031) collector collector emitter gate 5.45 (.215) bsc dimensions in millimeters and (inches) 2-plcs. 15.95 (.628)16.05(.632) 1.22 (.048)1.32 (.052) 5.45 (.215) bsc {2 plcs.} 4.98 (.196)5.08 (.200) 1.47 (.058) 1.57 (.062) 2.67 (.105)2.84 (.112) 0.46 (.018) {3 plcs} 0.56 (.022) dimensions in millimeters (inches) heat sink (collector) and leads are plated 3.81 (.150)4.06 (.160) (base of lead) collector(heat sink) 1.98 (.078)2.08 (.082) gate collector emitter 0.020 (.001)0.178 (.007) 1.27 (.050)1.40 (.055) 11.51 (.453)11.61 (.457) 13.41 (.528)13.51(.532) revised8/29/97 1.04 (.041)1.15(.045) 13.79 (.543)13.99(.551) revised 4/18/95 apt50gs60b_srdq2(g) 052-6301 rev a 8-2007 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT50GS60BRG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X